Bài tập trắc nghiệm ôn tập Giải tích Lớp 11 - Đạo hàm của hàm số lượng giác (Có hướng dẫn giải)

Câu 9. Đạo hàm của y=sin2x  là
A.  2sin8x. B.  8sin8x. C.  sin8x. D. 4sin8x .
Hướng dẫn giải:
Chọn D. 
 y'2.4sin4xcos4x = 4sin8x. 
Câu 10. Hàm số  y= 2cosx2 có đạo hàm là
A.  -2sinx2. B.  -4xcosx2. C.  -2xsinx2. D.  -4xsinx2.
Hướng dẫn giải:
Chọn D.
docx 25 trang Yến Phương 08/02/2023 3080
Bạn đang xem 20 trang mẫu của tài liệu "Bài tập trắc nghiệm ôn tập Giải tích Lớp 11 - Đạo hàm của hàm số lượng giác (Có hướng dẫn giải)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxbai_tap_trac_nghiem_on_tap_giai_tich_lop_11_dao_ham_cua_ham.docx

Nội dung text: Bài tập trắc nghiệm ôn tập Giải tích Lớp 11 - Đạo hàm của hàm số lượng giác (Có hướng dẫn giải)

  1. BÀI TẬP TRẮC NGHIỆM ĐẠO HÀM CỦA HÀM SỐ LƯỢNG GIÁC A – TÓM TẮT LÝ THUYẾT 1. Giới hạn lượng giác sin x sin u(x) lim 1; lim 1 (với lim u(x) 0 ) x 0 x x x0 u(x) x x0 2. Đạo hàm các hàm số lượng giác Đạo hàm Hàm hợp (sin x)' cos x (sin u)' u '.cosu (cos x)' sin x (cosu)' u 'sin u 1 u ' (tan x)' tan u ' cos2 x cos2 u 1 u ' (cot x)' cot u ' sin2 x sin2 u B – BÀI TẬP DẠNG 1: TÍNH ĐẠO HÀM TẠI MỘT ĐIỂM BẰNG CÔNG THỨC HOẶC BẰNG MTCT 2 Câu 1. Hàm số y f x có f ' 3 bằng: cos x 8 4 3 A. 2 . B. . C. . D. 0 . 3 3 Hướng dẫn giải: Chọn D. 2 1 sin x f ' x 2. cos x '. 2. . cos x cos2 x cos2 x sin 3 f ' 3 2 . 0 . cos2 3 Câu 2. Cho hàm số y cos3x.sin 2 x. Tính y ' bằng: 3 1 1 A. y ' 1. B. y ' 1. C. y ' . D. y ' . 3 3 3 2 3 2 Hướng dẫn giải: Chọn B. y ' cos3x 'sin 2 x cos3x sin 2 x ' 3sin 3x.sin 2x 2cos3x.cos 2x . y ' 3sin 3 .sin 2 2cos3 .cos 2 1. 3 3 3 3 3 cos 2x Câu 3. Cho hàm số y . Tính y ' bằng: 1 sin x 6 A. y ' 1. B. y ' 1. C. y ' 3 . D. y ' 3 . 6 6 6 6 Hướng dẫn giải: Chọn D.
  2. cos 2x '. 1 sin x cos 2x 1 sin x ' 2sin 2x 1 sin x cos 2x.cosx y ' . 1 sin x 2 1 sin x 2 3 1 1 3 3 3 2. 1 . 2 2 2 2 3 3 y ' 2 4 4 2 3 3 3 . 2 6 1 1 2 4 1 2 4 2 Câu 4. Cho hàm số y f x sin x cos x . Giá trị f ' bằng: 16 2 2 2 A. 0 . B. 2 . C. . D. . Hướng dẫn giải: Chọn A. 1 1 1 f ' x cos x sin x cos x sin x . 2 x 2 x 2 x 2 2 2 1 1 2 2 f ' cos sin 0 . 16 2 4 4 2 2 2 2. 2 4 2 Câu 5. Cho hàm số y f x tan x cot x . Giá trị f ' bằng: 4 2 1 A. 2 . B. . C. 0 . D. . 2 2 Hướng dẫn giải: Chọn C. 1 1 y tan x cot x y2 tan x cot x y '.2y . cos2 x sin2 x 1 1 1 y ' 2 2 . 2 tan x cot x cos x sin x 1 1 1 1 f ' 2 2 0 4 2 2 2 2 2 tan cot cos sin 4 4 4 4 1 Câu 6. Cho hàm số y f x . Giá trị f ' bằng: sin x 2 1 A. 1. B. . C. 0 . D. Không tồn tại. 2 Hướng dẫn giải: Chọn C. 1 1 cos x y y2 y '2y . sin x sin x sin2 x 1 cos x 1 cos x sin x cos x y ' . 2 2 . 2 . 2y sin x 2 sin x 2 sin x sin x sin cos 2 2 1 0 f ' . . 0 . 2 2 2 2 1 sin 2
  3. 5 Câu 7. Xét hàm số y f x 2sin x . Tính giá trị f ' bằng: 6 6 A. 1. B. 0 . C. 2 . D. 2 . Hướng dẫn giải: Chọn D. 5 f ' x 2cos x . 6 f ' 2 . 6 2 Câu 8. Cho hàm số y f x tan x . Giá trị f ' 0 bằng: 3 A. 4 . B. 3 . C. 3 . D. 3 . Hướng dẫn giải: Chọn A. 1 y ' . 2 2 cos x 3 f ' 0 4 . cos x Câu 9. Cho hàm số y . Tính y bằng: 1 sin x 6 A. y 1. B. y 1. C. y 2 . D. y 2 . 6 6 6 6 Hướng dẫn giải: Chọn D. sin x 1 sin x cos2 x 1 Ta có y . 1 sin x 2 1 sin x 1 y 2 . 6 1 sin 6 1 Câu 10. Cho hàm số y f (x) . Giá trị f là: sin x 2 1 A. 1 . B. . C. 0. D. Không tồn tại. 2 Hướng dẫn giải: Chọn C. 1 sin x cos x y 2 tan x sin x sin x sin x f tan 0 2 2 cos x 4 Câu 11. Cho hàm số y f (x) cot x . Giá trị đúng của f bằng: 3sin3 x 3 3 8 9 9 8 A. . B. . C. . D. . 9 8 8 9 Hướng dẫn giải: Chọn B.
  4. cos x 4 1 4 4 2 y f (x) 3 cot x cot x. 2 cot x cot x.(1 cot x) cot x 3sin x 3 sin x 3 3 2 3 1 2 1 cot x 1 cot x cot x 3cot x. cot x 2 2 2 . 3 sin x sin x sin x 2 cot 3 1 9 Suy ra f 3 2 2 8 sin sin 3 3 cos2 x Câu 12. Cho hàm số y f (x) 2 . Biểu thức f 3 f bằng 1 sin x 4 4 8 8 A. 3 . B.  C. 3 . D.  3 3 Hướng dẫn giải: Chọn C. 2cos xsin x 1 sin2 x 2cos xsin x cos2 x f x 2 1 sin2 x 2 2 2cos xsin x 1 sin x cos x 4cos xsin x 8 2 2 f 1 sin2 x 1 sin2 x 4 9 1 8 f 3 f 3 . 4 4 3 3 3 2 x Câu 13. Cho hàm số y f x sin 5x.cos . Giá trị đúng của f bằng 3 2 3 3 3 3 A.  B.  C.  D.  6 4 3 2 Hướng dẫn giải: Chọn A. x 2 x x f ' x 3.5.cos5x.sin2 5x.cos2 sin3 5x  sin cos 3 3 3 3 3 3 f 0 1.  2 2.3 6 2 Câu 14. Cho hàm số f x tan x . Giá trị f 0 bằng 3 A. 3 . B. 4 . C. 3 . D. 3 . Hướng dẫn giải: Chọn B. 1 1 f x f 0 4. 2 2 1 cos x 3 4 cos x Câu 15. Cho hàm số y f x . Chọn kết quả SAI 1 2sin x 5 1 A. f  B. f 0 2 . C. f  D. f 2 . 6 4 2 3 Hướng dẫn giải: Chọn A.
  5. BÀI TẬP TRẮC NGHIỆM ĐẠO HÀM CỦA HÀM SỐ LƯỢNG GIÁC A – TÓM TẮT LÝ THUYẾT 1. Giới hạn lượng giác sin x sin u(x) lim 1; lim 1 (với lim u(x) 0 ) x 0 x x x0 u(x) x x0 2. Đạo hàm các hàm số lượng giác Đạo hàm Hàm hợp (sin x)' cos x (sin u)' u '.cosu (cos x)' sin x (cosu)' u 'sin u 1 u ' (tan x)' tan u ' cos2 x cos2 u 1 u ' (cot x)' cot u ' sin2 x sin2 u B – BÀI TẬP DẠNG 1: TÍNH ĐẠO HÀM TẠI MỘT ĐIỂM BẰNG CÔNG THỨC HOẶC BẰNG MTCT 2 Câu 1. Hàm số y f x có f ' 3 bằng: cos x 8 4 3 A. 2 . B. . C. . D. 0 . 3 3 Hướng dẫn giải: Chọn D. 2 1 sin x f ' x 2. cos x '. 2. . cos x cos2 x cos2 x sin 3 f ' 3 2 . 0 . cos2 3 Câu 2. Cho hàm số y cos3x.sin 2 x. Tính y ' bằng: 3 1 1 A. y ' 1. B. y ' 1. C. y ' . D. y ' . 3 3 3 2 3 2 Hướng dẫn giải: Chọn B. y ' cos3x 'sin 2 x cos3x sin 2 x ' 3sin 3x.sin 2x 2cos3x.cos 2x . y ' 3sin 3 .sin 2 2cos3 .cos 2 1. 3 3 3 3 3 cos 2x Câu 3. Cho hàm số y . Tính y ' bằng: 1 sin x 6 A. y ' 1. B. y ' 1. C. y ' 3 . D. y ' 3 . 6 6 6 6 Hướng dẫn giải: Chọn D.