Bài tập trắc nghiệm ôn tập Giải tích Lớp 11 - Giới hạn dãy số (Có hướng dẫn giải)

Khi tính các giới hạn dạng phân thức, ta chú ý một số trường hợp sau đây:

     · Nếu bậc của tử nhỏ hơn bậc của mẫu thì kết quả của giới hạn đó bằng 0.

     · Nếu bậc của từ bằng bậc của mẫu thì kết quả của giới hạn đó bằng tỉ số các hệ số của luỹ thừa cao nhất của tử và của mẫu.

· Nếu bậc của tử lớn hơn bậc của mẫu thì kết quả của giới hạn đó là +vô cùng nếu hệ số cao nhất của tử và mẫu cùng dấu và kết quả là – vô cùng nếu hệ số cao nhất của tử và mẫu trái dấu.

docx 37 trang Yến Phương 08/02/2023 4980
Bạn đang xem 20 trang mẫu của tài liệu "Bài tập trắc nghiệm ôn tập Giải tích Lớp 11 - Giới hạn dãy số (Có hướng dẫn giải)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxbai_tap_trac_nghiem_on_tap_giai_tich_lop_11_gioi_han_day_so.docx

Nội dung text: Bài tập trắc nghiệm ôn tập Giải tích Lớp 11 - Giới hạn dãy số (Có hướng dẫn giải)

  1. GIỚI HẠN DÃY SỐ A – LÝ THUYẾT VÀ PHƯƠNG PHÁP GIỚI HẠN HỮU HẠN GIỚI HẠN VÔ CỰC 1. Giới hạn đặc biệt: 1. Giới hạn đặc biệt: 1 1 k lim 0 ; lim 0 (k ¢ ) lim n lim n (k ¢ ) n n n k n lim qn (q 1) n lim q 0 ( q 1) ; lim C C 2. Định lí: n n 2. Định lí : 1 a) Nếu lim un thì lim 0 a) Nếu lim un = a, lim vn = b thì un lim (un + vn) = a + b un lim (un – vn) = a – b b) Nếu lim un = a, lim vn = thì lim = 0 vn lim (un.vn) = a.b u a c) Nếu lim un = a 0, lim vn = 0 lim n (nếu b 0) un neáu a.vn 0 vn b thì lim = neáu a.v 0 vn n b) Nếu un 0, n và lim un= a d) Nếu lim u = + , lim v = a thì a 0 và lim u a n n n neáu a 0 thì lim(un.vn) = c) Nếu un vn ,n và lim vn = 0 neáu a 0 thì lim un = 0 * Khi tính giới hạn có một trong các dạng vô d) Nếu lim un = a thì lim un a 0 3. Tổng của cấp số nhân lùi vô hạn định: , , – , 0. thì phải tìm cách khử 0 u 2 1 S = u1 + u1q + u1q + = q 1 dạng vô định. 1 q B – BÀI TẬP DẠNG 1: TÍNH GIỚI HẠN BẰNG ĐỊNH NGHĨA Phương pháp: Để chứng minh limun 0 ta chứng minh với mọi số a 0 nhỏ tùy ý luôn tồn tại một số na sao cho un a n na . Để chứng minh limun l ta chứng minh lim(un l) 0 . Để chứng minh limun ta chứng minh với mọi số M 0 lớn tùy ý, luôn tồn tại số tự nhiên nM sao cho un M n nM . Để chứng minh limun ta chứng minh lim( un ) . Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất. Câu 1. Chọn mệnh đề đúng trong các mệnh đề sau: A. Nếu lim un , thì limun . B. Nếu lim un , thì limun . C. Nếu limun 0 , thì lim un 0 . D. Nếu limun a , thì lim un a .
  2. 1 Câu 2. Giá trị của lim bằng: n 1 A. 0 B. 1 C. 2 D. 3 1 Câu 3. Giá trị của lim (k ¥ *) bằng: nk A. 0 B. 2 C. 4 D. 5 sin2 n Câu 4. Giá trị của lim bằng: n 2 A. 0 B. 3 C. 5 D. 8 Câu 5. Giá trị của lim(2n 1) bằng: A. B. C. 0 D. 1 1 n2 Câu 6. Giá trị của lim bằng: n A. B. C. 0 D. 1 2 Câu 7. Giá trị của lim bằng: n 1 A. B. C. 0 D. 1 cos n sin n Câu 8. Giá trị của lim bằng: n2 1 A. B. C. 0 D. 1 n 1 Câu 9. Giá trị của lim bằng: n 2 A. B. C. 0 D. 1 3n3 n Câu 10. Giá trị của lim bằng: n2 A. B. C. 0 D. 1 2 n Câu 11. Giá trị của lim bằng: n 1 A. B. C. 0 D. 1 2n 1 Câu 12. Giá trị của A lim bằng: n 2 A. B. C. 2 D. 1 2n 3 Câu 13. Giá trị của B lim bằng: n2 1 A. B. C. 0 D. 1 n2 1 Câu 14. Giá trị của C lim bằng: n 1 A. B. C. 0 D. 1 n 2 n Câu 15. Giá trị của A lim bằng: 2n 1 A. B. C. D. 1 2 nsin n 3n2 Câu 16. Giá trị của B lim bằng: n2 A. B. C. 3 D. 1
  3. 1 Câu 17. Giá trị của C lim bằng: n2 2 n 7 A. B. C. 0 D. 1 4n 1 Câu 18. Giá trị của D lim bằng: n2 3n 2 A. B. C. 0 D. 4 an Câu 19. Giá trị của lim 0 bằng: n! A. B. C. 0 D. 1 Câu 20. Giá trị của lim n a với a 0 bằng: A. B. C. 0 D. 1 DẠNG 2: TÌM GIỚI HẠN CỦA DÃY SỐ DỰA VÀO CÁC ĐỊNH LÝ VÀ CÁC GIỚI HẠN CƠ BẢN Phương pháp: Sử dụng các định lí về giới hạn, biến đổi đưa về các giới hạn cơ bản. f (n) Khi tìm lim ta thường chia cả tử và mẫu cho nk , trong đó k là bậc lớn nhất của g(n) tử và mẫu. k m Khi tìm lim f (n) g(n) trong đó lim f (n) lim g(n) ta thường tách và sử dụng phương pháp nhân lượng liên hơn. + Dùng các hằng đẳng thức: a b a b a b; 3 a 3 b 3 a2 3 ab 3 b2 a b Dùng định lí kẹp: Nếu un vn ,n và lim vn = 0 thì lim un = 0 Khi tính các giới hạn dạng phân thức, ta chú ý một số trường hợp sau đây: Nếu bậc của tử nhỏ hơn bậc của mẫu thì kết quả của giới hạn đó bằng 0. Nếu bậc của từ bằng bậc của mẫu thì kết quả của giới hạn đó bằng tỉ số các hệ số của luỹ thừa cao nhất của tử và của mẫu. Nếu bậc của tử lớn hơn bậc của mẫu thì kết quả của giới hạn đó là + nếu hệ số cao nhất của tử và mẫu cùng dấu và kết quả là – nếu hệ số cao nhất của tử và mẫu trái dấu. n un 1 1 Câu 1. Cho dãy số un với un n và . Chọn giá trị đúng của limun trong các số sau: 4 un 2 1 1 A. . B. .C. 0 . D. 1. 4 2 ncos 2n Câu 2. Kết quả đúng của lim 5 2 là: n 1 1 A. 4. B. 5. C. –4. D. . 4 2n 1 Câu 3. Giá trị của. A lim bằng: 1 3n 2 A. B. C. D. 1 3
  4. 4n2 3n 1 Câu 4. Giá trị của. B lim bằng: (3n 1)2 4 A. B. C. D. 1 9 n2 2n 1 Câu 5. Kết quả đúng của lim là 3n4 2 3 2 1 1 A. . B. . C. . D. . 3 3 2 2 3n n4 Câu 6. Giới hạn dãy số u với u là: n n 4n 5 3 A. . B. . C. . D. 0 . 4 n3 2n 5 Câu 7. Chọn kết quả đúng của lim : 3 5n 2 A. 5 . B. .C. . D. . 5 2n2 3n 1 Câu 8. Giá trị của A lim bằng: 3n2 n 2 2 A. B. C. D. 1 3 n2 2n Câu 9. Giá trị của B lim bằng: n 3n2 1 1 A. B. C. 0 D. 1 3 4 2n2 1 n 2 9 Câu 10. Giá trị của C lim bằng: n17 1 A. B. C. 16 D. 1 n2 1 3 3n3 2 Câu 11. Giá trị của D lim bằng: 4 2n4 n 2 n 1 3 3 A. B. C. D. 1 4 2 1 4 3n3 1 n Câu 12. Giá trị của C lim bằng: 2n4 3n 1 n A. B. C. 0 D. 1 (n 2)7 (2n 1)3 Câu 13. Giá trị của. F lim bằng: (n2 2)5 A. B. C. 8 D. 1 n3 1 Câu 14. Giá trị của. C lim bằng: n(2n 1)2 1 A. B. C. D. 1 4
  5. GIỚI HẠN DÃY SỐ A – LÝ THUYẾT VÀ PHƯƠNG PHÁP GIỚI HẠN HỮU HẠN GIỚI HẠN VÔ CỰC 1. Giới hạn đặc biệt: 1. Giới hạn đặc biệt: 1 1 k lim 0 ; lim 0 (k ¢ ) lim n lim n (k ¢ ) n n n k n lim qn (q 1) n lim q 0 ( q 1) ; lim C C 2. Định lí: n n 2. Định lí : 1 a) Nếu lim un thì lim 0 a) Nếu lim un = a, lim vn = b thì un lim (un + vn) = a + b un lim (un – vn) = a – b b) Nếu lim un = a, lim vn = thì lim = 0 vn lim (un.vn) = a.b u a c) Nếu lim un = a 0, lim vn = 0 lim n (nếu b 0) un neáu a.vn 0 vn b thì lim = neáu a.v 0 vn n b) Nếu un 0, n và lim un= a d) Nếu lim u = + , lim v = a thì a 0 và lim u a n n n neáu a 0 thì lim(un.vn) = c) Nếu un vn ,n và lim vn = 0 neáu a 0 thì lim un = 0 * Khi tính giới hạn có một trong các dạng vô d) Nếu lim un = a thì lim un a 0 3. Tổng của cấp số nhân lùi vô hạn định: , , – , 0. thì phải tìm cách khử 0 u 2 1 S = u1 + u1q + u1q + = q 1 dạng vô định. 1 q B – BÀI TẬP DẠNG 1: TÍNH GIỚI HẠN BẰNG ĐỊNH NGHĨA Phương pháp: Để chứng minh limun 0 ta chứng minh với mọi số a 0 nhỏ tùy ý luôn tồn tại một số na sao cho un a n na . Để chứng minh limun l ta chứng minh lim(un l) 0 . Để chứng minh limun ta chứng minh với mọi số M 0 lớn tùy ý, luôn tồn tại số tự nhiên nM sao cho un M n nM . Để chứng minh limun ta chứng minh lim( un ) . Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất. Câu 1. Chọn mệnh đề đúng trong các mệnh đề sau: A. Nếu lim un , thì limun . B. Nếu lim un , thì limun . C. Nếu limun 0 , thì lim un 0 . D. Nếu limun a , thì lim un a .