Bài tập trắc nghiệm ôn tập Giải tích Lớp 11 - Phương trình tiếp tuyến (Có hướng dẫn giải)
Tiếp tuyến tại điểm M(xo;y0) thuộc đồ thị hàm số:
Cho hàm số (C): y=f(x) và điểm M(xo;yo). Viết phương trình tiếp tuyến với (C) tại M.
- Tính đạo hàm f'(x). Tìm hệ số góc của tiếp tuyến là f'(xo)
- phương trình tiếp tuyến tại điểm M là: y=f'(x)(x-xo)+yo
Cho hàm số (C): y=f(x) và điểm M(xo;yo). Viết phương trình tiếp tuyến với (C) tại M.
- Tính đạo hàm f'(x). Tìm hệ số góc của tiếp tuyến là f'(xo)
- phương trình tiếp tuyến tại điểm M là: y=f'(x)(x-xo)+yo
Bạn đang xem 20 trang mẫu của tài liệu "Bài tập trắc nghiệm ôn tập Giải tích Lớp 11 - Phương trình tiếp tuyến (Có hướng dẫn giải)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- bai_tap_trac_nghiem_on_tap_giai_tich_lop_11_phuong_trinh_tie.docx
Nội dung text: Bài tập trắc nghiệm ôn tập Giải tích Lớp 11 - Phương trình tiếp tuyến (Có hướng dẫn giải)
- BÀI TẬP TRẮC NGHIỆM TIẾP TUYẾN A – LÝ THUYẾT VÀ PHƯƠNG PHÁP 1. Tiếp tuyến tại điểm M x0 ; y0 thuộc đồ thị hàm số: Cho hàm số C : y f x và điểm M x0 ; y0 C . Viết phương trình tiếp tuyến với (C) tại M. - Tính đạo hàm f ' x . Tìm hệ số góc của tiếp tuyến là f ' x0 - phương trình tiếp tuyến tại điểm M là: y f ' x x x0 y0 2. Tiếp tuyến có hệ số góc k cho trước - Gọi là tiếp tuyến cần tìm có hệ số góc k. - Giả sử M x0 ; y0 là tiếp điểm. Khi đó x0 thỏa mãn: f ' x0 k (*) . - Giải (*) tìm x0 . Suy ra y0 f x0 . - Phương trình tiếp tuyến cần tìm là: y k x x0 y0 3. Tiếp tuyến đi qua điểm Cho hàm số C : y f x và điểm A a;b . Viết phương trình tiếp tuyến với (C) biết tiếp tuyến đi qua A. - Gọi là đường thẳng qua A và có hệ số góc k. Khi đó : y k x a b (*) f x k x a b 1 - Để là tiếp tuyến của (C) có nghiệm. f ' x k 2 - Thay (2) vào (1) ta có phương trình ẩn x. Tìm x thay vào (2) tìm k thay vào (*) ta có phương trình tiếp tuyến cần tìm. Chú ý: 1. Hệ số góc của tiếp tuyến với (C) tại điểm M x0 ; y0 thuộc (C) là: k f ' x0 2. Cho đường thẳng d : y kd x b 1 +) / / d k kd +) d k .kd 1 k kd k kd +) ,d tan +) ,Ox k tan 1 k .kd 3. Cho hàm số bậc 3: y ax3 bx2 cx d, a 0 +) Khi a 0 : Tiếp tuyến tại tâm đối xứng của (C) có hệ số góc nhỏ nhất. +) Khi a 0 : Tiếp tuyến tại tâm đối xứng của (C) có hệ số góc lớn nhất. B – BÀI TẬP DẠNG 1: TIẾP TUYẾN TẠI ĐIỂM THUỘC ĐỒ THỊ HÀM SỐ: Câu 1. Cho hàm số y f (x) , có đồ thị C và điểm M 0 x0 ; f (x0 ) (C) . Phương trình tiếp tuyến của C tại M 0 là: A. y f (x) x x0 y0 . B. y f (x0 ) x x0 . C. y y0 f (x0 ) x x0 . D. y y0 f (x0 )x . Hướng dẫn giải: Chọn C Câu 2. Phương trình tiếp tuyến của đồ thị hàm số y x 1 2 x – 2 tại điểm có hoành độ x 2 là A. y –8x 4 . B. y 9x 18 . C. y –4x 4 . D. y 9x 18 . Hướng dẫn giải:
- Chọn D. Gọi M x0 ; y0 là tọa độ tiếp điểm. Ta có x0 2 y0 0 . y x 1 2 x – 2 x3 3x 2 y 3x2 3 y 2 9 . Vậy phương trình tiếp tuyến cần tìm là y 9 x 2 0 y 9x 18. Câu 3. Phương trình tiếp tuyến của đồ thị của hàm số y x 3 – x 2 tại điểm có hoành độ x 2 là A. y –3x 8 . B. y –3x 6 . C. y 3x – 8. D. y 3x – 6 . Hướng dẫn giải: Chọn A. Gọi M x0 ; y0 là tọa độ tiếp điểm. Ta có x0 2 y0 2 . y x 3 x 2 x3 6x2 9x y 3x2 12x 9 y 2 3. Vậy phương trình tiếp tuyến cần tìm là y 3 x 2 2 y 3x 8 . Câu 4. Cho đường cong C : y x2 . Phương trình tiếp tuyến của C tại điểm M –1;1 là A. y –2x 1. B. y 2x 1. C. y –2x –1. D. y 2x –1. Hướng dẫn giải: Chọn C. y x2 y 2x . y 1 2 . Phương trình tiếp tuyến cần tìm: y 2 x 1 1 y 2x 1. x2 x Câu 5. Cho hàm số y . Phương trình tiếp tuyến tại A 1; –2 là x 2 A. y –4 x –1 – 2 . B. y –5 x –1 2 . C. y –5 x –1 – 2 . D. y –3 x –1 – 2 . Hướng dẫn giải: Chọn C. x2 x x2 4x 2 y y , y 1 5 . x 2 x 2 2 Phương trình tiếp tuyến cần tìm: y 5 x 1 2 y 5x 3 . 1 Câu 6. Cho hàm số y x3 – 3x2 7x 2 . Phương trình tiếp tuyến tại A 0;2 là: 3 A. y 7x 2 . B. y 7x 2 . C. y 7x 2 . D. y 7x 2 . Hướng dẫn giải: Chọn A. Ta có : y x2 6x 7 Hệ số góc tiếp tuyến y 0 7 Phương trình tiếp tuyến tại A 0;2 : y 7 x 0 2 7x 2 . Câu 7. Gọi P là đồ thị của hàm số y 2x2 x 3 . Phương trình tiếp tuyến với P tại điểm mà P cắt trục tung là: A. y x 3 . B. y x 3 . C. y 4x 1. D. y 11x 3 . Hướng dẫn giải: Chọn A.
- Ta có : P cắt trục tung tại điểm M 0;3 . y 4x 1 Hệ số góc tiếp tuyến : y 0 1 Phương trình tiếp tuyến của đồ thị P tại M 0;3 là y 1 x 0 3 x 3. 3x 1 Câu 8. Đồ thị C của hàm số y cắt trục tung tại điểm A . Tiếp tuyến của C tại điểm A x 1 có phương trình là: A. y 4x 1. B. y 4x 1. C. y 5x 1. D. y 5x 1. Hướng dẫn giải: Chọn A. Ta có : điểm A 0; 1 4 y hệ số góc tiếp tuyến y 0 4 x 1 2 Phương trình tiếp tuyến của đồ thị C tại điểm A 0; 1 là : y 4 x 0 1 4x 1. 2x 4 Câu 9. Cho hàm số y có đồ thị là (H) . Phương trình tiếp tuyến tại giao điểm của (H) với trục x 3 hoành là: A. y 2x 4 . B. y 3x 1. C. y 2x 4 . D. y 2x . Hướng dẫn giải: Chọn C. 2 Giao điểm của (H) với trục hoành là A(2;0) . Ta có: y ' y '(2) 2 (x 3)2 Phương trình tiếp tuyến cần tìm là y 2(x 2) hay y 2x 4 . 3 2 Câu 10. Phương trình tiếp tuyến của đồ thị hàm số f x x 2x 3x tại điểm có hoành độ x0 1 là: A. y 10x 4. B. y 10x 5. C. y 2x 4. D. y 2x 5. Hướng dẫn giải: Chọn A. Tập xác định: D ¡ . Đạo hàm: y 3x2 4x 3. y 1 10; y 1 6 Phương trình tiếp tuyến cần tìm là d : y 10 x 1 6 10x 4. x 1 Câu 11. Gọi H là đồ thị hàm số y . Phương trình tiếp tuyến của đồ thị H tại các giao điểm x của H với hai trục toạ độ là: y x 1 A. y x 1. B. . C. y x 1. D. y x 1. y x 1 Hướng dẫn giải: Chọn A. Tập xác định: D ¡ \ 0. 1 Đạo hàm: y . x2 H cắt trục hoành tại điểm có hoành độ là x 1 và không cắt trục tung. y 1 1
- BÀI TẬP TRẮC NGHIỆM TIẾP TUYẾN A – LÝ THUYẾT VÀ PHƯƠNG PHÁP 1. Tiếp tuyến tại điểm M x0 ; y0 thuộc đồ thị hàm số: Cho hàm số C : y f x và điểm M x0 ; y0 C . Viết phương trình tiếp tuyến với (C) tại M. - Tính đạo hàm f ' x . Tìm hệ số góc của tiếp tuyến là f ' x0 - phương trình tiếp tuyến tại điểm M là: y f ' x x x0 y0 2. Tiếp tuyến có hệ số góc k cho trước - Gọi là tiếp tuyến cần tìm có hệ số góc k. - Giả sử M x0 ; y0 là tiếp điểm. Khi đó x0 thỏa mãn: f ' x0 k (*) . - Giải (*) tìm x0 . Suy ra y0 f x0 . - Phương trình tiếp tuyến cần tìm là: y k x x0 y0 3. Tiếp tuyến đi qua điểm Cho hàm số C : y f x và điểm A a;b . Viết phương trình tiếp tuyến với (C) biết tiếp tuyến đi qua A. - Gọi là đường thẳng qua A và có hệ số góc k. Khi đó : y k x a b (*) f x k x a b 1 - Để là tiếp tuyến của (C) có nghiệm. f ' x k 2 - Thay (2) vào (1) ta có phương trình ẩn x. Tìm x thay vào (2) tìm k thay vào (*) ta có phương trình tiếp tuyến cần tìm. Chú ý: 1. Hệ số góc của tiếp tuyến với (C) tại điểm M x0 ; y0 thuộc (C) là: k f ' x0 2. Cho đường thẳng d : y kd x b 1 +) / / d k kd +) d k .kd 1 k kd k kd +) ,d tan +) ,Ox k tan 1 k .kd 3. Cho hàm số bậc 3: y ax3 bx2 cx d, a 0 +) Khi a 0 : Tiếp tuyến tại tâm đối xứng của (C) có hệ số góc nhỏ nhất. +) Khi a 0 : Tiếp tuyến tại tâm đối xứng của (C) có hệ số góc lớn nhất. B – BÀI TẬP DẠNG 1: TIẾP TUYẾN TẠI ĐIỂM THUỘC ĐỒ THỊ HÀM SỐ: Câu 1. Cho hàm số y f (x) , có đồ thị C và điểm M 0 x0 ; f (x0 ) (C) . Phương trình tiếp tuyến của C tại M 0 là: A. y f (x) x x0 y0 . B. y f (x0 ) x x0 . C. y y0 f (x0 ) x x0 . D. y y0 f (x0 )x . Hướng dẫn giải: Chọn C Câu 2. Phương trình tiếp tuyến của đồ thị hàm số y x 1 2 x – 2 tại điểm có hoành độ x 2 là A. y –8x 4 . B. y 9x 18 . C. y –4x 4 . D. y 9x 18 . Hướng dẫn giải: