Đề ôn tập học kì 2 Toán Lớp 11 - Đề số 1 (Có đáp án)
Bài 4. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a√2 .
1) Chứng minh rằng các mặt bên hình chóp là những tam giác vuông.
2) Chứng minh rằng: (SAC) vuông góc (SBD) .
3) Tính góc giữa SC và mp (SAB) .
4) Tính góc giữa hai mặt phẳng (SBD) và (ABCD) .
1) Chứng minh rằng các mặt bên hình chóp là những tam giác vuông.
2) Chứng minh rằng: (SAC) vuông góc (SBD) .
3) Tính góc giữa SC và mp (SAB) .
4) Tính góc giữa hai mặt phẳng (SBD) và (ABCD) .
Bạn đang xem tài liệu "Đề ôn tập học kì 2 Toán Lớp 11 - Đề số 1 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_on_tap_hoc_ki_2_toan_lop_11_de_so_1_co_dap_an.doc
Nội dung text: Đề ôn tập học kì 2 Toán Lớp 11 - Đề số 1 (Có đáp án)
- ĐỀ ÔN TẬP HỌC KÌ 2 – Năm học Đề số 1 Môn TOÁN Lớp 11 Thời gian làm bài 90 phút I. Phần chung cho cả hai ban Bài 1. Tìm các giới hạn sau: 2 x x2 7x 1 x 1 2 1) lim 2) lim 2x4 3x 12 3) lim 4) lim x 1 x 1 x x 3 x 3 x 3 9 x2 Bài 2. 1) Xét tính liên tục của hàm số sau trên tập xác định của nó: x2 5x 6 khi x 3 f (x) x 3 2x 1 khi x 3 2) Chứng minh rằng phương trình sau có ít nhất hai nghiệm : 2x3 5x2 x 1 0 . Bài 3. 1) Tìm đạo hàm của các hàm số sau: 3 a) y x x2 1 b) y (2x 5)2 x 1 2) Cho hàm số y . x 1 a) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = – 2. x 2 b) Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với d: y . 2 Bài 4. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a 2 . 1) Chứng minh rằng các mặt bên hình chóp là những tam giác vuông. 2) Chứng minh rằng: (SAC) (SBD) . 3) Tính góc giữa SC và mp (SAB) . 4) Tính góc giữa hai mặt phẳng (SBD) và (ABCD) . II . Phần tự chọn. 1 . Theo chương trình chuẩn. x3 8 Bài 5a. Tính lim . x 2 x2 11x 18 1 Bài 6a. Cho y x3 2x2 6x 8 . Giải bất phương trình y / 0 . 3 2. Theo chương trình nâng cao. x 2x 1 Bài 5b. Tính lim . x 1 x2 12x 11 x2 3x 3 Bài 6b. Cho y . Giải bất phương trình y / 0 . x 1 Hết Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . 1
- ĐÁP ÁN ĐỀ ÔN TẬP HỌC KÌ 2 – Năm học Môn TOÁN Lớp 11 Đề số 1 Thời gian làm bài 90 phút Bài 1. 2 x x2 ( x 2)(x 1) 1) lim = lim lim( x 2) 3 x 1 x 1 x 1 (x 1) x 1 3 12 2) lim 2x4 3x 12 = lim x2 2 x x x x4 7x 1 3) lim x 3 x 3 Ta có: lim (x 3) 0, lim (7x 1) 20 0; x 3 0 khi x 3 nên I x 3 x 3 x 1 2 x 3 1 1 4) lim = lim lim x 3 9 x2 x 3 (3 x)(3 x)( x 1 2) x 3 (x 3)( x 1 2) 24 Bài 2. x2 5x 6 khi x 3 1) Xét tính liên tục của hàm số sau trên tập xác định của nó: f (x) x 3 2x 1 khi x 3 Hàm số liên tục với mọi x 3. Tại x = 3, ta có: + f (3) 7 (x 2)(x 3) + lim f (x) lim (2x 1) 7 + lim f (x) lim lim (x 2) 1 x 3 x 3 x 3 x 3 (x 3) x 3 Hàm số không liên tục tại x = 3. Vậy hàm số liên tục trên các khoảng ( ;3), (3; ) . 2) Chứng minh rằng phương trình sau có ít nhất hai nghiệm : 2x3 5x2 x 1 0 . Xét hàm số: f (x) 2x3 5x2 x 1 Hàm số f liên tục trên R. Ta có: f (0) 1 0 + PT f(x) = 0 có ít nhất một nghiệm c (0;1) . f (1) 1 1 f (2) 1 0 + PT f(x) = 0 có ít nhất một nghiệm c (2;3). f (3) 13 0 2 Mà c1 c2 nên PT f(x) = 0 có ít nhất 2 nghiệm. Bài 3. 2x2 1 3 12 1) a) y x x2 1 y' b) y y' 2 3 x2 1 (2x 5) (2x 5) x 1 2 2) y y (x 1) x 1 (x 1)2 a) Với x = –2 ta có: y = –3 và y ( 2) 2 PTTT: y 3 2(x 2) y 2x 1. x 2 1 1 b) d: y có hệ số góc k TT có hệ số góc k . 2 2 2 2
- 1 2 1 x0 1 Gọi (x ; y ) là toạ độ của tiếp điểm. Ta có y (x ) 0 0 0 2 2 2 x 3 (x0 1) 0 1 1 + Với x 1 y 0 PTTT: y x . 0 0 2 2 1 7 + Với x 3 y 2 PTTT: y x . 0 0 2 2 Bài 4. 1) SA (ABCD) SA AB, SA AD S Các tam giác SAB, SAD vuông tại A. BC SA, BC AB BC SB SBC vuông tại B. CD SA, CD AD CD SD SCD vuông tại D. 2) BD AC, BD SA BD (SAC) (SBD) (SAC). 3) BC (SAB) ·SC,(SAB) ·BSC A D SAB vuông tại A SB2 SA2 AB2 3a2 SB = O a 3 B C BC 1 SBC vuông tại B tan·BSC ·BSC 600 SB 3 4) Gọi O là tâm của hình vuông ABCD. Ta có: (SBD)(ABCD) BD , SO BD, AO BD · (SBD),(ABCD) ·SOA SA SAO vuông tại A tan·SOA 2 AO x2 8 Bài 5a. I lim x 2 x2 11x 18 x2 11x 18 (x 2)(x 9) 0, khi x 2 (1) 2 2 Ta có: lim (x 11x 18) 0 , x 11x 18 (x 2)(x 9) 0, khi x 2 (2) x 2 lim (x2 8) 12 0 (*) x 2 x2 8 Từ (1) và (*) I1 lim . x 2 x2 11x 18 x2 8 Từ (2) và (*) I2 lim x 2 x2 11x 18 1 Bài 6a. y x3 2x2 6x 18 y' x2 4x 6 3 BPT y' 0 x2 4x 6 0 2 10 x 2 10 x 2x 1 (x 2x 1) x 2x 11 (x 1) Bài 5b. lim lim = lim 0 x 1 x2 12x 11 x 1 (x2 12x 11) x 2x 1 x 1 (x 11) x 2x 1 x2 3x 3 x2 2x Bài 6b. y y' x 1 (x 1)2 2 2 x 2x x 2x 0 x 0 BPT y 0 0 . (x 1)2 x 1 x 2 === 3